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ABSTRACT

Let G be a group with a weight (norm) w, and thus a distance. Let H

be a normal subgroup of G. A basic lemma connects w-decomposition in G

with that in the factor group G/H. One application is the justification of a

general, operationally useful, concept of step-by-step decoding of G into H.
A second application is to the study of a question of Slepian's: When can a

set of unique coset representatives, one element of minimal weight from
each H-coset, be chosen so that this set of representatives is dosed under

descendance? A sufficient condition, independent of H, is proved. In

particular, the answer is positive for groups G with Hamming or Lee weight

functions.
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STEP-BY-STEP DECODING IN GROUPS WITH A
WEIGHT FUNCTION (PART I)

0. INTRODUCTION

The considerations of this paper grow out of work in the theory of error-

correcting code groups, but are placed in a more general context than is

usual there. We consider groups with a weight function (norm) w in terms

of which a distance can be defined. We are particularly interested in the

theory of those cases where the triangle inequality w(f) + w(g)> w(fg) be-

comes equality. A very elementary knowledge of some concepts in group

theory and in. the theory of order relations is assumed.

Section 1 reviews some standard properties of weight and distance on
a group G, not necessarily finite or commutative. Section 2 uses the triangle

equality for weight to define such concepts as w-decomposition in G and a

partial ordering of G called descendance. The useful lemma (2.3) relates

w-decomposition in a group G to w-decomposition in a factor group G/H.

Section 3 defines and justifies step-by-step decoding, a refinement of Slepian

decoding. The problem is: given some element in an H-coset, to find an

element of minimal weight in that coset. Section 4 gives some results on a

question of Slepiants: Given a group G with a weight function w, and a normal

subgroup H of G. When is it possible to choose a set S of unique represent-

atives for H-cosets, one element of minimal weight from each coset, such

that every descendant of an element of S is also in S?

1. WEIGHT AND DISTANCE FUNCTIONS ON A GROUP

Let G be a group written multiplicatively, and with identity element e.

Let w and d be mappings into the real numbers of G and of G X G respectively.

Released for publication June 22, 196 1.
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Given w or d, we define U or W respectively by

(1. 1. 1) '90fg) = w(f 1 g),

(1.1.2) W(g) = d(e, g),

for all elements f, g in G.

Given such a mapping w or d, we list some properties that may or

may not hold for all f, g, h in G:

(1.2.1) w(e) = 0; (1.3.1) d(g, g) =0;

(1.2.2) w(g) >Oifg e; (1.3.2) d(f, g) >Oiifg;

(1.2.3) w(g) = w(g- 1); (1.3.3) d(f, g) = d(g, f);

(1.2.4) w(f) + w(g) > w(fg); (1.3.4) d(f,g) + d(gh) > d(f ,h),

(1.2.5) w(f 1 gf)=w(g); (1.3.5) d(fh, gh) f d(f, g);

(1.3.6) d(hf, hg) - d(f, g).

We then have the following proposition

(1.4) Let w be a mapping of G into the reals. Then the construction

( 1. . 1) - (1. 1. 2) ; is such that w = w and (1. 3. 6) holds for U. If any of

the properties (1. 2. 1) through (1. 2. 5) holds for w, the corresponding pro-

perty (1.3.1) through (1. 3.5) holds for U.

Let d be a mapping of G X G into the reals such that (1. 3.6) holds.

Then the construction d 1. . W (1. . 1) a is such that d = . Moreover.

if any of the properties (1. 3.1) through (1.3.5) holds for d. then the cor-

responding property (1. 2. 1) through (1. 2.5) holds for V.

We give a sample of the straightforward verifications. Suppose that

(1.3.6) holds for d, to show that d = . We have a(f, g) =W(fIg) =d(e,fr g)

d(f, g).

Suppose that bth (1.3.6) and (1.3.4) hold for d. To show that (1.2 . 4)

holds for W, that is W(f) + 7(g) > W(fg); that is, d(e, f) + d(e, g) > d(e, fg) by

the definition (1. 1. 2); that is, d(f, e) + d(e, g)> d(f 1, g) using (1.3.6); but
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this holds by (1.3.4).

In what follows, a mapping w with properties (1.2. 1) through (1.2.5)

is called a weight function on G. The corresponding mapping U of (1. 1. 1)

is called a distance function, and will be represented by d. If the range

of w is a well-ordered subset of the reals (> 0) in the natural ordering,

we say that w is RWO. In this case, every subset S of G must have an

element of least weight. In particular, if w is RWO, there is a least non-

zero weight on G.

The following construction yields an interesting class of weight functions

on G:

(1.5) Let A be a set of generators of a group G. Let the set A be

closed under inversion and under conjugation by elements of G, that is, if

a is in A and f is in G, then a 1 and f af are in A. Define a function w

on G by w(e) = 0; if g e, w(g) is the minimum length t of expressions

g = al.,. at for g as a product of elements in the generating set A. Then

w is an RWO weight function.

Suppose that we are given a set of groups Gi with identity elements ei

for i in the index set I. We consider the direct product group G = 7GIi

whose elements are the sets g = (gi), where each component gi of g is in

G i and where the relation gi = ei holds for all except a finite number of

components. Multiplication is defined by fg = h, where hi = figi . We then

have

(1.6) Let G G be a direct product of groups G with weight functions

w I, Then

*(1.6.1) w(g) w fw(gi)
11defines a weight function w on G.



4 A

We mention some special classes of weight functions as examples. They

can be defined either through (1. 5) or (1. 6).

(1.7.1) If we take A = G in (1.5), the group is said to have the coarse weight

function. All elements other than the identity then have weight 1.

(1. 7.2) Let G be a direct product group. Take A in (1. 5) as the set of all

elements g such that gi = ei for every component except one. The group G

is then said to have a Hamming weight function. Equivalently, give the

groups Gi coarse weight functions wi., and define the weight function on G

by (1.6).

(1. 7. 3) Let G be a direct product of cyclic groups Gi. each with a fixed gene-

rating element bi . Take A as the set of all elements g such that gj = ei for

every component except one, this component gj being either b or b'.

The group G is then said to have a Lee weight function.

The following properties deal with a subgroup of a group with weight

function.

(1. 8) Let the group G have an RWO weight function w, and let H be a normal

subgroup of G. Then an RWO weight function on the factor group G/H is de-

fined by w(Z) = min w(z) for z in Z, where Z is any H-coset.

If we do not require w on G to be RWO, and define w(Z) = inf w(z) for

z in Z, then the function w on G/H does not necessarily satisfy (1. 2.2).

(1.9) Let G be a group with a weight function w and the corresponding

distance function d. Let H be any subgroup of G, and g be any element of

G. Thend(hg) is minimal for h in H if and only if h =gf 1, where f is

some element of minimal weight in the coset Hg.

By definition, d(h, g) = w(h- lg). Then f = h" 1g runs through the coset

Hg as h runs through the group H.
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Remarks. Slepian (1956) has made property (1. 9) the basis of a decoding

procedure for error-correcting group codes. See also Hamming (1950) and

Lee (1958).

2. w-DECOMPOSITION

Let G be a group with a weight function w. We say that a relation

[g; gl ... , gt] holds in G and defines a w-decomposition of g if

(2.1) g = 1 ... t

w(g) w(g 1) + ... w(gt)

for g, gi in G. The relations [g; g 1 ,..., gt] and [gi; h 1 , ... ] h imply

[g; gj, ... , gi- 1I h1, ... , h , gi+ ' ... g1]

A w-decomposition of g is called trivial if one of the factors gj of (2. 1)

is equal to g, the other factors then necessarily being equal to the identity

element e of G. We call g e in G an atom if all w-decompositions of g

are trivial. We call a w-decomppsition of g atomic if all the factors gi of

the decomposition are atoms. An atomic w-decomposition of an element g

in G necessarily exists if w is RWO. An example at the end of this section

shows that the set of atoms occurring in an atomic w-decomposition of g

need not be uniquely determined by g.

Any factor gi occurring in any w-decomposition of g is called a descendant

of g, the factors g, and gt of (2. 1) being called left and right descendants

respectively. An element f is a right descendant of g if and only if

w(g) w(gf 1) + w(f). a

We write f < g if f is a descendantof g. The relation of descendance

gives a partial ordering of g (as do the relations of left or right descendance),

that is,
(2.2) f< gand g<_ fif and onlyif f-g,

If< gandgS himplyf<_h.
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An atom of G can be described as an element g e whose only descendants

are g and e. The atoms in the construction (1. 5) are the elements unequal

to e in the generating set A.

The following useful lemma relates w-decomposition in a group G to

that in a factor group G/H:

(2.3) Given a normal subgroup H of a group G with an RWO weight func-

tion w, let the fac-L group G/H have the induced weight function w of (1. 8).

(2. 3. 1) If z is an element of minimal weight in the coset Z = Hz and if the

relation [z; z i,1" ztI holds in G, then each zi, 1 S i t, is an element of

minimal weight in the coset Zi = Hzi. and the relation [Z; Z ....V , Zt] holds

in G/H.

(2.3.2) Conversely, if the relation [Z; Z1 , ... , Zt] holds in G/H and if zi

is an element of minimal weight in Zi1 < i < t, then z = z 1 ... zt is an ele-

ment of minimal weight in Z, and the relation [z; z 1, ... , zt] holds in G.

To prove (2.3.1), it follows from the definition (1.8) of the induced

weight function on G/H that w(Zi) < w(zi), 1 < i< t. Thus

w(Z 1) + ... + w(Zt) < w(z 1) + ... + w(z t) by (1. 8),

= w(z) = w(Z) by hypothesis,
.w(Z1 ) +... + w(Zt) by the triangle in-

equality (1.2.4) on G/H.

Since the extreme terms are identical, there must be equality throughout. The

first equality implies the set of equalities w(Zi) = w(zi).

To prove (2.3. 2), we have

w(z) w(z i ) + ... w(zt) by (1.2.4) on G,

= w(Z 1 ) + ... + w(Zt) =w(Z) by hypothesis,

S_ w(z) by (1. 8).
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Since the extreme terms are identical, there is equality throughout, and

the converse holds.

We give some concrete illustrations of weight functions. Let G be the

cyclic group of order 8 written as the group of integers with addition modulo

R. We give two weight functions w and w on G in the following table.

g0 1 2 3 4 5 6 7

w(g) 0 1 2 3 4 3 2 1

w(g) 0 1 2 1 1 1 2 1

Both weight functions are examples of construction (1.5) with the generating

set A as the set of elements of weight 1 in the table. The weight function w

is a Lee weight function (1.7.3). The atomic w-decompositions of the ele-

ments 2 and 6 in (G,w) are 2 = 1+1 = 5+5 = 3+7, 6 = 3+3 = 7+7 = 1+5. The

partial ordering of descendance in the two cases is represented in the fol-

lowing diagrams.

/4\

3 5
I I
2 61 3 4 5 7

71\Io/ 0

(G, w) (G, w)
0

3. STEP-BY-STEP DECODING

Here G is a group with a RWO weight function w, H is a normal sub-

0
group of G, and. the factor group G/H has the induced weight function w of

(1.8). We callHacode group. We calla mappingg -. g' of Ginto Ha
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decoding function if d(g, g') < d(g, h) for all h in H. A decoding function

maps each g of G into a closest element g' in H.

The word classifying can replace decoding here. For each element h

in the subgroup H, let S(h) be the set of all elements g in G that are as close to h

as to any other element of H. Then to decode an element g of G into a

closest element h of H is to determine that g belongs to the class S(h).

Consider a mapping of G into H,

(3.1) g _- g, =gf' 1

where f is some element of minimal weight in the coset Hg. Then by

(1.9), the mapping (3. 1) is a decoding functi(on.

The concept of step-by-step decoding to be introduced adds nothing in

theory to what has just been said. It is of interest if an operational point

of view is taken. It may be thought of as justifying the piece-by-piece

construction of an element f of minimal weight in the coset Hg, going from

an element g of G to a closest code element g' of H in a series of steps.

Consider a mapping of G into G,

(3.2) g-.gz ,

where z is a right descendant of some element of minimal weight in the

coset Hg, z being the identity e of G iand only if Hg = H. Consider a

chain formed by applications of this mapping,

(3.3) g = go -gl1 g2 "..@ A
-1

where gi+ 1 = gizi1 as in (3. 2). We wish to prove:

(3.4) There is a first element gj in the chain (3.3) such that gj is in H.

The mapping g -. gj is a decoding function for G over the code group H.

Proof. Let Yi = Hg,, and Zi = Hz.. Since by definition zi is a right1

descendant of an element of minimal weight in Yi, it follows from (2.3. 1)

0
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that zi is an element of minimal weight in the coset Zi . and that the relation

0[ Yi; Yi+ I, Zi] holds in GIH. Thus for all i, the relation [ Y0 ; Y i+ 1, Zi, Zi- 1 ,

... A Z0 holds, and each z is an element of minimal weight in Zi. Since the

weight function is RWO, there must exist some index j such that Yj = H.

Let f = zj- 1 'j-2 ... z 0. Then the relation [ Y0 ; Z7 .- 1 " Z ,. 0 ] holds, and by

(2.3.2) the relation [f; Zj l, ... , z0 ] holds in G, and f is an element of
-1

minimal weight in Y0 = Hg. Thus, gj = gf is an element of H at minimal

distance from g, completing the proof of (3.4).

Note that the elements z f e of (3. 2) can be restricted to be atoms of

G. Note also that in (3. 1) or (3.2) the element f or z can be required to be

the same for every g in an H-coset.

Remark. The concept of step-by-step decoding is regarded here as a

refinement of the decoding principle introduced in Slepian (1956). A planned

second part to the present paper will consider concrete applications. Some

concrete examples can be found in Prange (1958, 1959). See also Wells

(1960) and Peterson (1961).

4. SUBSETS CLOSED UNDER DESCENDANCE

We say that a subset S of a group G with weight function w is closed

under descendance if for every element g of S, all descendants of g are

in S. For example, if H is a normal subgroup of G and if S is the set of

all elements of G that are of minimal weight in their H-coset, then the first

half of (2. 3) guarantees that S is closed under descendance.

Given (g, w) and a normal subgroup H of G, is it possible to choose a set

S of coset representatives, exactly one element of minimal weight from each

H-coset, such that the set S is closed under descendance? This cannot always

be done, as the following counterexample shows. Let (G, w') be the group of
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integers under addition modulo 8 with the weight function w of Sec. 2. Let

H be the subgroup 10, 4 1. Since one of the elements 2 or 6 must be chosen

as a representative of the coset H + 2 =2, 6}, a set of representatives for

H-cosets must contain at least the six descendants of this element if the

set is closed under descendance. But there are only four H-cosets.

The results to be proved are as follows. We prove (4. 1) a sufficient

condition (independent of H) that the answer to the above question be posi-

tive. We show (4. 2) that this sufficient condition holds in a finite or count-

able direct product of groups each of which satisfies the condition. Finally

we show (4. 3) that the condition holds in the basic groups used in defining

direct product groups with Lee or Hamming weight.

(4. 1) Let (G, w) have a well-ordering << such that

(4.1.1) w(x) < w(y) implies that x << y; and

(4.1.2) if the relations [z; w,x,y] and [T; w, ,y] holdinG, then3F<< x

implies z << z.

If C is any subset of G, let C* be the least element of C under the well-

ordering <<. Then for every normal subgroup H of q, the set S(H) of all

representatives Z* for cosets Z in the factor group G/H is a set of unique

coset representatives of minimal weight that is closed under descendance.

Pr_ . The relations [z; w, x, y] and [T; w, 0, y] imply that w(z) - w(- =

w(x) - w(-). Thus if an ordering satisfies (4. 1. 1), it automatically satisfies

(4. 1. 2) in all cases where w(x) k w(ix). Note also that any well-ordering of

G that satisfies (4. 1. 1) is an extension of the partial ordering of descendance.

The existence of a well-ordering satisfying (4. 1. 1) implies that w is RWO.

We must show that, given the normal subgroup H, the set S(H) is closed

under descendance. Let Z be an H-coset, Z* = z, and let x be a descendant

of z. Then for some elements w and y, the relation [ z; w, x, y] holds in G.
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LetHw =W, Hx = XandHy=Y. By(2.3.1), the relation[Z;W,X,Y]

holds in G/H, and w, x, and y are elements of ninimal weight in W, X,

and Y respectively. Suppose that x is not in S(H), that is, X* =x << x.

Let T = w x y. By (2.3,2), i is an element (of minimal weight) in Z, and

the relation [i; w,i_, yj holds in G. By hypothesis (4. 1.2), << z since

x << x, a contradiction. Thus X* = x, and the set S(H) is closed under

descendance.

(4.2) Let G = II G. be the direct product of a finite or countable num-
I i

ber of groups (Gi. wi ) for each of which the hypothesis of (4. 1) holds. Let

the weight function w on G defined by (1.6) be RWO. Then the hypothesis

of (4. 1) holds for (G, w).

Proof. We may assume that the index set I is either the set of positive

integers, or a finite initial segment 1, 2, ... , n of this set. By hypothesis,

each group (Gi , wi ) has a well-ordering << that satisfies (4.1.1) and (4.1.2).

We define an ordering on (G, w) as follows: x << 3 if (4. 2. 1) w(x) < w(x), or

if (4. 2.2) w(x) =w(-), x. =x. for i> j, and x. <<.. Recall that-for any1 1

element x = (xi) of G, x. = e i for all except a finite number of components.

Thus, for any two elements x 3 of G, there must exist a greatest integer j

such that x. 3 j. The ordering << on G is at least a simple ordering, any

two elements of G are comparable.

We must show that the ordering << on G is a well-ordering, that is,

every nonempty subset C of G has a least element C*. The following con-

struction of nested subsets of C clearly leads to a least element. Choose

first the elements c of minimal weight in C. These exist, since the weight

function on G is RWO by hypothesis. Of these, choose those elements c

for which the integer j such that c. = e i for all i > j is minimal. Of these

choose the elements c such that, successively, ci, cj_ 1j " c 1 are least
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in the given orderings of G., ... , Gil

Our definition guarantees that (4. 1. 1) holds for the ordering << on G.

We proved that if w(x) w(x), then (4. 1. 1) implies (4.1. 2). In the case

w(x) = w(x), suppose that the relations [ z; w, x, y] and [ z; w, V, y] hold on

G. Then the highest integer j for which x and ij disagree is the same as

the highest integer j for which z. and T. disagree. In this case, the defini-

tion (4.2.2) reduces the verification of (4. 1.2) on G to its verification on Gj,

where it holds by hypothesis. This completes the proof of (4.2).

(4.3) The hypothesis of (4. 1) can be satisfied for groups (G, w) of the

following types: (4.3. 1) any group with coarse weight function for which

some well-ordering exists; (4.3. 2) any cyclic group with weight function

defined by (1.5) for a set A ,= b of generators. Indeed, in these cases,

any well-ordering that satisfies (4. 1. 1) automatically satisfies (4. 1. 2).

Proof. It is clear that in either of these cases, a well-ordering

satisfying (4. 1. 1) exists. We wish to show that such an ordering also

satisfies (4. 1. 2). We need only consider the case z i, w(z) = w(z). Sup-

pose we have verified in this case that the only common descendant of z

and T is the identity' element e of G. Then in the hypothesis of (4. 1. 2),

we must havew =y =e, whencex = zandx =z, and (4.1.2)holds. If the

group has coarse weight function, all elements other than the identity are

atoms, and two distinct atoms have only e as a common descendant. If

the group is a cyclic group with the given weight function, then there are

at most two elements bt and (b ) of weight t. If these elements are dis-

tinct, then the set of descendants of the first element contains exactly the

elements bi for 0 < i < t; and similarly for the second. If these sets have

more than the element e in common, then the expressions bt and (b l )t

cannot be minimal expressions inthe generators. Thus our supposition
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holds in both cases.

It now follows, working backward, that the hypothesis and conclusion

of (4. 1) can be satisfied for groups with Hamming or Lee weight, provided

that direct products of an at most countable number of basic groups are

allowed, and that each of the basic groups in the Hamming weight case can

be well-ordered.

Remark. Slepian conjectured that the answer to the question considered

in this section was positive for a finite direct product of two-element groups,

and this was proved by E. F. Moore (unpublished, 1957). An affirmative

answer in the case of Lee weight was given by Prange (unpublished, 1959)

and it is this proof that is given above in a more abstract form. The ques-

tion is an interesting one, but I do not know of any application. See also

Peterson (1961).
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